Multi-Input Multi-Output Nonlinear Autopilot Design for Ship-to-Ship Missiles

Ki Hong Im, Dongkyoung Chwa, and Jin Young Choi*

Abstract: In this paper, a design method of nonlinear autopilot for ship-to-ship missiles is proposed. Ship-to-ship missiles have strongly coupled dynamics through roll, yaw, and pitch channel in comparison with general STT type missiles. Thus it becomes difficult to employ previous control design method directly since we should find three different solutions for each control fin deflection and should verify the stability for more complicated dynamics. In this study, we first propose a control loop structure for roll, yaw, and pitch autopilot which can determine the required angles of all three control fins. For yaw and pitch autopilot design, missile model is reduced to a minimum phase model by applying a singular perturbation like technique to the yaw and pitch dynamics. Based on this model, a multi-input multi-output (MIMO) nonlinear autopilot is designed. And the stability is analyzed considering roll influences on dynamic couplings of yaw and pitch channel as well as the aerodynamic couplings. Some additional issues on the autopilot implementation for these coupled missile dynamics are discussed. Lastly, 6-DOF (degree of freedom) numerical simulation results are presented to verify the proposed method.

Keywords: Nonlinear control, missiles, non-minimum phase, singular perturbation method, couplings, multi-input multi-output systems.

1. INTRODUCTION

Recently, there have been a lot of researches in the area of nonlinear autopilot design, which directly considered the nonlinearities in missile dynamics [1-9]. In particular, when the accelerations of the missile system are set to be controlled outputs, the input-output characteristics of the tail-controlled missile dynamics become non-minimum phase. Thus, well-known nonlinear control design methods such as the feedback linearization technique cannot be directly applied to the acceleration control of the tail-controlled missiles. To solve these problems, a method of partially linearizing control and singular perturbation like technique was proposed by approximating the non-minimum phase system into a minimum phase system [10-12].

In general, the nonlinear autopilot designs [10-12] were proposed for skid-to-turn (STT) missiles which have weak couplings between yaw and pitch dynamics while assuming the stabilization of the roll dynamics. However, the ship-to-ship missile considered in this paper has complicated couplings among roll, yaw, and pitch dynamics through wind angles (roll angle, angle-of-attack, and side slip angle) and three control fin deflections. Furthermore, the look-up tables for this ship-to-ship missile dynamics are given in terms of the total angle-of-attack and the bank angle instead of the angle-of-attack and the side-slip angle. Since these methods can no longer be directly employed, a control method needs to be developed for ship-to-ship missile with above aspects being considered.

This paper proposes an autopilot design consisting of the roll stabilizing controller and the yaw-pitch autopilot to achieve the satisfactory acceleration tracking performance. Firstly, overall control loop structure is proposed for the three channels to determine required control fin deflections easily. Since there are dominant aerodynamic coefficients for control inputs in each channel, the overall control loop for the ship-to-ship missile is divided into two parts; a roll dynamics stabilizer and a yaw-pitch autopilot. Secondly, a singular perturbation like technique is employed to the missile model so that it can be
approximated to a minimum phase model. This minimum phase characteristics make it possible to design a feedback linearizing controller [11] and the yaw-pitch autopilot is designed by feedback linearization technique [13,14] in the MIMO structure. Through these steps, the proposed method achieves a decoupled acceleration tracking performance for both yaw and pitch channels but this makes the stability verification more complicated and difficult. Finally the overall stability is analyzed considering roll influences on dynamic couplings of yaw and pitch channel as well as the aerodynamic couplings. In addition, the paper discusses the issues of the implementation of the autopilots for coupled missile dynamics and, finally, presents the stability analysis of the overall missile control system.

The remainder of this paper is organized as follows. Firstly, an approximate minimum phase missile model is derived from the ship-to-ship missile dynamics. Then, the control loop is designed based on the minimum phase model and the stability is analyzed. Finally, the implementation issues are discussed, and the 6-DOF (degree of freedom) simulation results to verify the performance of the proposed autopilot are presented.

2. APPROXIMATE MINIMUM PHASE MODEL FOR SHIP-TO-SHIP MISSILES

In this section, ship-to-ship missile dynamics are presented together with their characteristics, and they are approximated to a minimum phase missile model by employing a partial feedback linearizing control input and singular perturbation like technique.

2.1. Ship-to-ship missile dynamics

The nonlinear missile dynamic equations with acceleration outputs are given by

\[
\begin{align*}
\dot{U} &= -r V - q W + \frac{T}{m} - \frac{Q S}{m} C_x(\gamma) \\
\dot{p} &= \frac{Q S D}{I_M} C_1(\gamma) + \frac{H U}{I_M} C_{lp} p, \\
\dot{\beta} &= -r + p \alpha + \frac{Q S}{m} C_y(\gamma) - \frac{Q S D B}{m} \frac{C_a}{C_m} \frac{B H}{m} C_{mr} r \\
\dot{\dot{r}} &= \frac{Q S}{I_M} C_e(\gamma) - \frac{Q S X_{eg}}{I_M} C_x(\gamma) + \frac{H}{I_M} U C_{mr} r \\
\dot{\alpha} &= \frac{Q S}{m} C_{\alpha}(\gamma), \\
\dot{\gamma} &= -q - \frac{Q S}{m} \frac{C_x(\gamma)}{C_m(\gamma)} + \frac{Q S D B}{m} \frac{C_a(\gamma)}{C_m(\gamma)} + \frac{B H}{m} C_{mq} q \\
\dot{q} &= \frac{Q S D}{I_M} C_m(\gamma) - \frac{Q S X_{eg}}{I_M} C_x(\gamma) + \frac{H}{I_M} U C_{mq} q \\
A_z &= \frac{Q S}{m} C_z(\gamma),
\end{align*}
\]

where \(H := 0.25 \rho S D \), \(B := m X_{eg} \left(I_M - m X_{eg}^2 \right) \), \((\cdot) := (M_M, \alpha_T, \phi_A, \delta_E, \delta_D, \delta_R)\), and \(C_{lp}, C_{mq}, C_{mr} \) are dynamic derivatives. General assumptions were made to derive the missile model in (1), such as constant inertia and mass, yaw-pitch symmetry, and constant velocity. We introduce the following functions to simplify the design procedure.

\[
\begin{align*}
C_a(M_M, \alpha_T, \phi_A) &= C_{a0}(M_M, \alpha_T, \phi_A) \\
&+ \frac{D}{l_f - l_g} C_{a0}(M_M, \alpha_T, \phi_A), \\
C_b(M_M, \alpha_T, \phi_A) &= C_{b0}(M_M, \alpha_T, \phi_A) \\
&+ \frac{D}{l_f - l_g} C_{b0}(M_M, \alpha_T, \phi_A).
\end{align*}
\]

Substituting (2a) and (2b) into (1b) and (1c), respectively, and using \(h_v = D \left(l_f - l_g \right) \), yaw and pitch dynamic equations become

\[
\begin{align*}
\beta &= -r + p \alpha + \frac{Q S}{U m h_v} (h_x + DB) C_y(\gamma) - \frac{Q S D B}{U m h_v} \frac{C_a}{m} \frac{B H}{m} C_{mr} r \\
\dot{\dot{r}} &= \frac{Q S}{I_M} \frac{C_e(\gamma)}{I_M} C_y(\gamma) + \frac{Q S D B}{I_M} \frac{C_a}{I_M} C_y(\gamma) + \frac{Q S D B}{I_M} \frac{C_a}{I_M} C_y(\gamma) + \frac{H}{I_M} U C_{mr} r \\
\dot{\alpha} &= \frac{Q S}{m} C_{\alpha}(\gamma), \\
\dot{\gamma} &= -q - \frac{Q S}{m} \frac{C_x(\gamma)}{C_m(\gamma)} + \frac{Q S D B}{m} \frac{C_a(\gamma)}{m} \frac{B H}{m} C_{mq} q \\
\dot{q} &= \frac{Q S D}{I_M} \frac{C_m(\gamma)}{I_M} C_x(\gamma) + \frac{H}{I_M} U C_{mq} q \\
A_z &= \frac{Q S}{m} C_z(\gamma),
\end{align*}
\]

where \((\cdot) := (M_M, \alpha_T, \phi_A), (\cdot) := (\alpha, \delta_E, \delta_D, \delta_R)\). However, since the coefficient functions, \(C(\gamma) \), are not suitable to be used with the control design method developed in terms of \(\alpha \), \(\beta \) and \(\phi_A \), we need to reformulate these aerodynamic coefficients into those parameterized by \(\alpha \), \(\beta \), and \(\delta \) such as \(C_\gamma(\gamma) \). These issues on implementation
problems will be discussed later. From here on, the
coefficient functions will be denoted by \(C_\cdot \) for
simplicity.

2.2. Approximate minimum phase model for ship-to-
ship missile

Yaw and pitch control inputs are chosen as

\[
\frac{u_y}{U} = -r + p\alpha + \frac{QS(h_v + DB)}{U mh_v} C_y \\
\frac{u_z}{U} = q - p\beta - \frac{QS(h_v + DB)}{U mh_v} C_z
\]

where \(u_y \) and \(u_z \) are new control inputs for yaw and
pitch dynamics, respectively, which will be
determined later. Substituting (4a) and (4b) into (3a)
and (3b), respectively, we obtain

\[
\begin{align*}
\ddot{\beta} &= \frac{u_y}{U} \\
\dot{r} &= K_r r - \frac{QSD(BX_{cg} - 1)}{I_M (h_v + DB)} C_a \\
A_y &= \left(\frac{(h_v + DB)}{U h_v} \right)^{-1} \left(\frac{u_y}{U} - p\alpha \right) + \frac{QSD}{U mh_v} C_a + \left(1 + \frac{BH}{m C_{nr}} \right) r,
\end{align*}
\]

\[
\begin{align*}
\ddot{\alpha} &= \frac{u_z}{U} \\
\dot{q} &= K_q q - \frac{QSD(BX_{cg} - 1)}{I_M (h_v + DB)} C_b \\
A_z &= \left(\frac{(h_v + DB)}{U h_v} \right)^{-1} \left(\frac{u_z}{U} - p\beta \right) + \frac{QSD}{U mh_v} C_b + \left(1 + \frac{BH}{m C_{mq}} \right) q,
\end{align*}
\]

where the over bars are used to distinguish the
variables of reduced system from those of original
dynamics. The dynamics in (7) are minimum phase
since the internal dynamics are stable. The error
dynamics between the original dynamics and the
reduced minimum phase dynamics will be considered
in the following section through the stability analysis.

3. CONTROL LOOP DESIGN AND
STABILITY ANALYSIS

In this section, we design control loops for ship-to-
ship missiles and analyze the stabilities. First, to
simplify the structure of controller for roll, yaw, and
pitch channels, we design the missile velocity control
loop. If we design the thrust force in (1a) as

\[
T = -m \left[rV - qW - \frac{QS}{m} C_x + k_v(U - U_d) \right],
\]

where \(U_d \) is a reference velocity input and \(k_v \) is a
positive design parameter, then the velocity dynamics
in (1a) with thrust in (8) become the stable dynamics
as follows.
\[\dot{U} = -k_u U + k_u U_d \]

Remark 1: The velocity \(U \) can be almost fixed as the constant \(U_d \) by the velocity controller (8) and, thus, Mach number could be assumed to be fixed in the sense that \(U \approx M_M \).

The following should be considered further in the design of other control loops. The missile model in this paper has relatively strong couplings not only in the aerodynamic coefficients through control fin deflections, but also in yaw and pitch dynamics through state variables. However, the couplings between roll dynamics and yaw-pitch dynamics can be weakened if \(p \) remains sufficiently small. The design of the roll stabilizer is possible only when the roll dynamics is independent of other dynamics. However, aerodynamic functions have additional couplings through control fin deflections since they include the control fin deflections of other channels and given as \(C_1(x,y,z) \), \(x = x, y, z \), or \(l \). Accordingly, it becomes difficult to solve each of the control fin deflections directly. To solve these problems, we propose the overall control loop structure as shown in Fig. 1. This figure represents the control structure with two main control blocks, interconnected by feedback loop. One of the blocks is the controller of the roll dynamics determining control fin command, \(\delta_R \), and the other is the controller of the yaw-pitch dynamics determining \(\delta_E \) and \(\delta_O \).

The roll aerodynamic coefficient function is given by

\[C_1 = C_{10}(M, \alpha, \beta) + C_{l\delta_E}(\delta_E) + C_{l\delta_O}(\delta_O) \]

where \(C_{l\delta_R} \) and \(C_{l\delta_E} \) are controllable parts, and \(C_{l\delta_R} \) is relatively larger than \(C_{l\delta_E} \) or \(C_{l\delta_O} \). Therefore, we can assume that \(C_{l\delta_R} \) is a dominant term in roll dynamics control, whereas \(C_{l\delta_E} \) and \(C_{l\delta_O} \) are dominant terms for yaw-pitch dynamics. In Fig. 1, the aerodynamic coupling through control inputs are considered by the feedback structure of the proposed controller such that the dominant aerodynamic coefficients can be designed well enough to eliminate the effects from the other coefficients. Since yaw and pitch dynamics have strong couplings through control fin deflections \(\delta_E, \delta_O \) and wind angles, we will proceed with the autopilot design for yaw-pitch channel in MIMO form. The characteristics of the yaw-pitch aerodynamic coefficients will be explained in more detail in the next subsection.

First, in order to make the roll dynamics stable, we make \(C_{l\delta_R} \) equal to the control input

\[u_p = C_{l\delta_R} \]

by designing this input as

\[u_p = \left(QSD \right)^{-1} \left(-C_{l\delta_E} - C_{l\delta_O} \right), \]

where \(V_p \) is a compensator variable, and fin commands \(\delta_E \) and \(\delta_O \) can be determined from yaw-pitch autopilot in Fig. 1. If we design the compensator as

\[\delta_E = k_p \delta_p - k_p \delta_\phi, \]

where \(\delta_p \) is a roll angular rate and \(k_p, k_\phi \) are positive design parameters, the roll dynamics become

\[\dot{\phi} = -k_\phi \delta_\phi - k_\phi \delta_\phi, \]

which verifies that \(\phi \) and \(p \) remain bounded and converge to zero.

For designing the control loops, the following assumptions are made.

Assumption 1: The variations of \(C_{l\delta} \), \(C_{mq} \), and \(C_{nr} \) are negligible (\(\dot{C}_{l\delta} = \dot{C}_{mq} = \dot{C}_{nr} = 0 \)).

Assumption 2: The controlled roll dynamics can work independently of yaw-pitch dynamics.

Remark 2: In general, dynamic derivatives in Assumption 1 can be included in nonlinear missile modeling in order to bring the missile model closer to the actual missile system. However, we can assume that those parameters remain constant since these parameters are slowing varying enough to be considered as fixed values.

Remark 3: Assumption 2 is similar to or weaker than assumptions that are usually made such that roll angle is zero or the roll rate is zero, i.e., \(\phi = 0, p = 0 \) [15]. The roll dynamics has inherently weak couplings with yaw-pitch dynamics, and also those small coupling terms are eliminated by the designed roll control loop.

Before discussing the yaw-pitch control design and its stability analysis, we characterize the properties of yaw-pitch aerodynamic coefficients. For this, the following assumption is made.

Assumption 3: \(C_\alpha(\alpha, \beta) \) and \(C_\beta(\alpha, \beta) \) in (2)
satisfy the conditions as follows:

i) C_a and C_b are smooth functions with respect to α and β.

ii) C_a and C_b are strictly increasing in β and α, respectively.

iii) The partial derivatives satisfy

$$
\left| \frac{\partial C_a}{\partial \alpha} < \frac{\partial C_a}{\partial \beta}, \frac{\partial C_b}{\partial \beta} < \frac{\partial C_b}{\partial \alpha} \right| \quad (14)
$$

iv) The inverse of the partial derivatives,

$$
\left(\frac{\partial C_a}{\partial \alpha} \right)^{-1} \text{ and } \left(\frac{\partial C_b}{\partial \alpha} \right)^{-1},
$$

are bounded.

Remark 4: The first and second conditions in Assumption 3 characterize the properties of the general shape of aerodynamic coefficient functions.

The third condition states that, in our missile system, the coefficient function C_a has dominant variation in β whereas C_b does in α even though those coefficients are strongly coupled and can be varied with α and β simultaneously. If the third condition is not satisfied, the dominant aerodynamics could changes conversely, which is not realistic for conventional STT missiles in that the autopilot can not be constructed properly. The fourth condition follows from the second condition and will be considered in the stability analysis.

The approximate minimum phase missile model derived in Section 2 is expressed here again for convenience.

$$
\begin{align*}
\bar{p} &= \frac{\bar{y}}{U} \\
\bar{q} &= K_r^{-1} \left\{ QSD(BX_{cg} - I) \frac{\bar{u}}{I_m(h_y + DB)} \right\} \\
\bar{\alpha} &= \frac{\bar{u}}{U} \\
\bar{\beta} &= K_q^{-1} \left\{ QSD(BX_{cg} - I) \frac{\bar{u}}{I_m(h_y + DB)} \right\} \\
\bar{\gamma} &= -\frac{\bar{u}}{U} \end{align*}
\quad (15a)
$$

$$
\begin{align*}
\bar{A}_y &= \frac{QSD}{(X_{cg}h_y + D)m} C_a + \frac{Hh_v}{(X_{cg}h_y + D)m} UC_{nr} \bar{\gamma}, \\
\bar{\alpha} &= \frac{\bar{u}}{U} \\
\bar{\beta} &= K_q^{-1} \left\{ QSD(BX_{cg} - I) \frac{\bar{u}}{I_m(h_y + DB)} \right\} \\
\bar{\gamma} &= -\frac{\bar{u}}{U} \end{align*}
\quad (15b)
$$

Here, we define the Jacobian matrices of the coefficient functions as

$$
A_{av} = \left[\begin{array}{ccc}
\frac{\partial C_a}{\partial \beta} & \frac{\partial C_a}{\partial \alpha} \\
-\frac{\partial C_b}{\partial \beta} & -\frac{\partial C_b}{\partial \alpha} \\
\end{array} \right], \quad \bar{A}_{av} = \left[\begin{array}{ccc}
\frac{\partial C_a}{\partial \beta} & \frac{\partial C_a}{\partial \alpha} \\
-\frac{\partial C_b}{\partial \beta} & -\frac{\partial C_b}{\partial \alpha} \\
\end{array} \right] \quad (16)
$$

Nonlinear autopilot design for yaw-pitch dynamics can be summarized as follows.

Proposition 1 (Autopilot Design for Ship-to-Ship Missile): If we design control inputs for (15a) and (15b) as

$$
\begin{align*}
\bar{C}_v &= \left(QS(h_y + DB) \right)^{-1} \left\{ \bar{p} + p\bar{\beta} \right\} \\
&\quad + \frac{QSDB}{Um} \frac{\bar{\alpha}}{C_{w}} \left\{ 1 + \frac{BH}{m} C_{w} \right\} \\
\bar{C}_z &= \left(QS(h_y + DB) \right)^{-1} \left\{ -\bar{p} - p\bar{\beta} \right\} \\
&\quad + \frac{QSDB}{Um} \frac{\bar{\alpha}}{C_{w}} \left\{ 1 + \frac{BH}{m} C_{w} \right\}, \\
\end{align*}
\quad (17a)
$$

and the compensator is designed as

$$
\begin{align*}
\bar{\gamma}_y &= -\theta_1 \bar{\gamma}_y + \theta_2 (A_{yc} - \bar{A}_y) \\
\bar{\gamma}_z &= -\theta_1 \bar{\gamma}_z + \theta_2 (A_{zc} - \bar{A}_z), \\
\end{align*}
\quad (19)
$$

then the acceleration outputs of the missile system in (15) follows that of the linear reference model $\ddot{\bar{y}}(z) + \theta_1 \ddot{\bar{y}}(z) + \theta_2 \ddot{\bar{y}}(z) = \theta_2 A_{yc}(zc)$, where θ_1 and θ_2 are positive design parameters.

Proof: Using Assumption 1 and differentiating the outputs of (15a) and (15b), \bar{A}_y and \bar{A}_z, with respect to time, we have

$$
\begin{align*}
\ddot{\bar{A}}_y &= \frac{QSD}{(X_{cg}h_y + D)m} \bar{C}_a + \frac{Hh_v}{(X_{cg}h_y + D)m} UC_{nr} \ddot{\bar{\gamma}}, \\
&= \frac{QSD}{(X_{cg}h_y + D)m} \left\{ \frac{\partial \bar{C}_a}{\partial \bar{\gamma}} \bar{\bar{\gamma}} + \frac{\partial \bar{C}_a}{\partial \bar{\gamma}} \bar{\bar{\gamma}} \right\} \\
&\quad + \frac{Hh_v}{(X_{cg}h_y + D)m} UC_{nr} \ddot{\bar{\gamma}} \\
\ddot{\bar{A}}_z &= -\frac{QSD}{(X_{cg}h_y + D)m} \bar{C}_b - \frac{Hh_v}{(X_{cg}h_y + D)m} UC_{nr} \ddot{\bar{\gamma}}
\end{align*}
$$

$$
\ddot{\bar{C}}_v = \left(QS(h_y + DB) \right)^{-1} \left\{ \bar{p} + p\bar{\beta} \right\} \\
+ \frac{QSDB}{Um} \frac{\bar{\alpha}}{C_{w}} \left\{ 1 + \frac{BH}{m} C_{w} \right\}, \\
\ddot{\bar{C}}_z = \left(QS(h_y + DB) \right)^{-1} \left\{ -\bar{p} - p\bar{\beta} \right\} \\
+ \frac{QSDB}{Um} \frac{\bar{\alpha}}{C_{w}} \left\{ 1 + \frac{BH}{m} C_{w} \right\},
\quad (17b)
$$

where the control inputs are chosen as

$$
\begin{align*}
\bar{\gamma}_y &= -\theta_1 \bar{\gamma}_y + \theta_2 (A_{yc} - \bar{A}_y) \\
\bar{\gamma}_z &= -\theta_1 \bar{\gamma}_z + \theta_2 (A_{zc} - \bar{A}_z), \\
\end{align*}
\quad (19)
$$

and the compensator is designed as

$$
\begin{align*}
\ddot{\bar{A}}_y &= \frac{QSD}{(X_{cg}h_y + D)m} \bar{C}_a + \frac{Hh_v}{(X_{cg}h_y + D)m} UC_{nr} \ddot{\bar{\gamma}}, \\
&= \frac{QSD}{(X_{cg}h_y + D)m} \left\{ \frac{\partial \bar{C}_a}{\partial \bar{\gamma}} \bar{\bar{\gamma}} + \frac{\partial \bar{C}_a}{\partial \bar{\gamma}} \bar{\bar{\gamma}} \right\} \\
&\quad + \frac{Hh_v}{(X_{cg}h_y + D)m} UC_{nr} \ddot{\bar{\gamma}} \\
\ddot{\bar{A}}_z &= -\frac{QSD}{(X_{cg}h_y + D)m} \bar{C}_b - \frac{Hh_v}{(X_{cg}h_y + D)m} UC_{nr} \ddot{\bar{\gamma}}
\end{align*}
$$
Consequently, we have

\[
\begin{align*}
\ddot{\bar{A}}_y &= \theta_1 \bar{v}_y + \theta_2 (A_{yc} - \bar{A}_y) \\
&= -\theta_1 \bar{A}_y + \theta_2 (A_{yc} - \bar{A}_y), \tag{21a}
\end{align*}
\]

\[
\begin{align*}
\ddot{\bar{A}}_z &= \theta_1 \bar{v}_y + \theta_2 (A_{zc} - \bar{A}_z) \\
&= -\theta_1 \bar{A}_z + \theta_2 (A_{zc} - \bar{A}_z). \tag{21b}
\end{align*}
\]

Here, we can find that the coupled yaw and pitch channels are now decoupled as in (21) and behave as second-order reference models when there is no error in the approximate minimum phase model.

Since control input and compensators in (18) and (19) should be replaced by actual values as

\[
\begin{align*}
\left\{ \begin{array}{l}
\ddot{u}_y = \frac{QSD}{(X_{cg} h_v + D)Um} - A_{uv}^{-1} \bar{v}_y \\
\ddot{v}_z = -\theta_1 \bar{v}_y + \theta_2 (A_{zc} - \bar{A}_z),
\end{array} \right.
\end{align*}
\]

we need to describe the error dynamics between (5) and (15) in order to analyze the stability and performance for MIMO autopilot for yaw-pitch channels.

Proposition 2 (Error Dynamics): The error dynamics between (5) and (15) is given as

\[
\begin{align*}
e_t &= -\theta_1 \bar{v}_y - \theta_2 e_y - \theta_2 A_r \dot{e}_0 \\
\dot{e}_\eta &= e_v, \\
\dot{e}_0 &= A_r e_0 + \dot{h} \\
e_{A} &= A_0 e_0 + e_\eta,
\end{align*}
\]

where

\[
\begin{align*}
e_v &= \begin{bmatrix} e_{vy} \\ e_{vz} \end{bmatrix} = \begin{bmatrix} v_y - \bar{v}_y \\ v_z - \bar{v}_z \end{bmatrix}, \\
e_{\eta} &= \begin{bmatrix} e_{\eta y} \\ e_{\eta b} \end{bmatrix} = \frac{QSD}{(X_{cg} h_v + D)m} \begin{bmatrix} C_a - \bar{C}_a \\ -C_b + \bar{C}_b \end{bmatrix},
\end{align*}
\]

\[
e_0 = \begin{bmatrix} e_{y0} \\ e_{q0} \end{bmatrix} = \begin{bmatrix} r_0 - \bar{r}_0 \\ q_0 - \bar{q}_0 \end{bmatrix}, e_{A} = \begin{bmatrix} e_{A y} \\ e_{A z} \end{bmatrix} = \begin{bmatrix} A_y - \bar{A}_y \\ A_z - \bar{A}_z \end{bmatrix},
\]

and

\[
\begin{align*}
A_1 &= \begin{bmatrix} h_1 (HUC_{mv} - K_r I) \\ h_1 (HUC_{mq} + K_q I) \end{bmatrix}, \\
A_2 &= \begin{bmatrix} K_r & 0 \\ 0 & K_q \end{bmatrix}, \tag{27b}
\end{align*}
\]

\[
\begin{align*}
h &= \begin{bmatrix} h_y \\ h_z \end{bmatrix} = \frac{1}{l(h_v + DB)} \begin{bmatrix} K_r^{-1} [\mu(D) - C_a] \\ -Um(X_{cg} h_v + D)(u_y / U - p\alpha) \end{bmatrix}, \tag{28}
\end{align*}
\]

\[
\begin{align*}
\begin{bmatrix} f_0 \\ q_0 \end{bmatrix} &= \begin{bmatrix} r \\ q \end{bmatrix} + h, \tag{29}
\end{align*}
\]

Proof: Together with (22) and (23), the coupled yaw-pitch dynamics in (5) give the closed loop system as follows.

\[
\begin{align*}
\begin{bmatrix} \dot{r} \\ \dot{q} \end{bmatrix} &= \begin{bmatrix} QSD(X_{cg} h_v - 1)c_a \\ -Um(X_{cg} h_v + D)(u_y / U - p\alpha) \end{bmatrix}, \tag{30}
\end{align*}
\]
Introducing the notations in (29), (32c) and (32d), this system can be reformulated as

\[
\begin{aligned}
A_y &= \left(\frac{(h_0 + DB)}{U h_0} \right)^{-1} \left\{ \frac{u_v}{U} - p \alpha + \frac{QSD}{U m h_0} C_a + (1 + \frac{BH}{m} C_m) r \right\} \\
A_z &= \left(\frac{(h_0 + DB)}{U h_0} \right)^{-1} \left\{ \frac{u_v}{U} - p \beta + \frac{QSD}{U m h_0} C_b + (1 + \frac{BH}{m} C_m) q \right\}.
\end{aligned}
\]
(32d)

The third row of (24) is obtained from (33a), and the first row of (24) is obtained from (32b), (35b), and (37).

The following theorem shows the stability and performance analysis for the coupled yaw and pitch error dynamics and use Propositions 1 and 2 when considering the error dynamics in (24) generated by singular perturbation like technique.

Theorem 1 (Stability Analysis of Error Dynamics): The error dynamics in (24) is stable in the sense that the tracking error \(e_{12} = (A_{y1} - A_{y2}, A_{z1} - A_{z2})^T \) is uniformly ultimately bounded.

Proof: See Appendix A.

Remark 5: Note that the tracking error in (A6b) is bounded and depends on the combinations of \(H_i^*, i=1,2,3 \), which in turn depends on initial condition and \(A_{12}^{-1} \). Since \(A_{12}^{-1} \) is a sufficiently small value, we can expect that \(e_{12}(t) \) will remain in a small neighborhood of zero after sufficient time. Accordingly, the ultimate bound of the tracking error in Theorem 1 can be said to also be dependent on \(A_{12}^{-1} \), and can be smaller when \(A_{12}^{-1} \) becomes small. Thus, when \(A_{12}^{-1} \) decreases to zero, it is possible to recover the asymptotic stability.

4. IMPLEMENTATION ISSUES

In the case where the control loops have a form as discussed in Section 3 and the missiles have strong couplings as in the case of the ship-to-ship missiles considered herein, some additional issues considering the implementation of this autopilot needs to be discussed as follows. Since the coefficient functions, \(C(\cdot)(M_M, \cdots), \cdot = x, y, z, \) or \(l, \) have a form of (3), the coefficient functions in \(\alpha_T \) and \(\phi_A \) in Section 3 shall not be suitable to apply the control design method for coefficient functions in \(\alpha \) and \(\beta \) and will have to overcome the following obstacle.

Fig. 2 shows the states in the \(Y - Z \) plane of body axis when acceleration commands are given such that the velocity vector passes through the origin. It should...
be noted that the instant jump phenomenon of bank angle ϕ_A occurs with these acceleration commands. This can be clearly verified through the following equation, where $A\phi$ becomes unbounded as α and β approach to zero.

$$A\phi = \alpha \beta - \beta^2 \frac{\beta}{\alpha^2 + \beta^2}$$

Accordingly, the parametric model of α_T and ϕ_A is not appropriate to be applied to the nonlinear control design schemes such as feedback linearization because these methods require the differentiation of the aerodynamic coefficients given as follows:

$$\frac{d}{dt} C(\alpha_T, \phi_A) = \frac{\partial C}{\partial \alpha_T} \alpha_T + \frac{\partial C}{\partial \phi_A} \phi_A.$$

Considering the above, coefficient functions in α and β is organized by reformulating the existing coefficient functions of α_T and ϕ_A, and the relations between these variables are given by

$$\tan \alpha_T = \sqrt{\tan^2 \alpha + \tan^2 \beta}$$
$$\tan \phi_A = \frac{\tan \alpha}{\tan \beta}.$$ (38)

That is, by using (38) and taking coordinate transformations for $C(\theta) (M, \alpha, \alpha_T, \phi_A, \delta_c)$ and $C(\theta) (M, \alpha, \alpha_T, \phi_A, \delta_c)$, where $\theta = x, y, z, \text{or} I$, $\theta = E, O, \text{or} R$, we can have the reformulated coefficient functions

$$C^R_{\theta}(M, \alpha, \beta, \alpha_T, \phi_A, \delta_c)$$
$$= C(\theta) (M, \tan^{-1} \{\sqrt{\tan^2 \alpha + \tan^2 \beta}\}, \frac{\tan \alpha}{\tan \beta}, \delta_c),$$
$$C^R_{\theta}(M, \alpha, \beta)$$
$$= C(\theta) \left(M, \tan^{-1} \{\sqrt{\tan^2 \alpha + \tan^2 \beta}\}, \frac{\tan \alpha}{\tan \beta} \right),$$

where $\theta = x, y, z, l, a, b$. Fig. 3 describes this relation. Note that the reformulated coefficient functions given by (38) have the same values as the original ones.

Another issue that must be dealt with is the calculation of the actual control fin deflections. Since the ship-to-ship missile uses non-affine, coupled aerodynamic coefficients through control fin deflections, it is not easy to determine the control fin

![Diagram](image-url)
deflections analytically. Thus, after calculating the
desired value of aerodynamic coefficient as given in
(17), control fin deflections need to be calculated by
employing numerical methods. The overall procedure
for obtaining control fin deflections is illustrated in
Fig. 4.

5. NUMERICAL SIMULATIONS

In this section, the overall control loops designed in
Section 3 are applied to 6-DOF ship-to-ship missile
model for simulations. Although we assumed constant
inertia and mass, yaw-pitch symmetry, and constant
velocity in designing the autopilot, we considered
them as time-varying variables in the simulations.
Also, all of the designed control loops such as
velocity control loop, roll stabilization loop, and yaw-
pitch autopilot loop are included.

Design parameters are set as follows: $U_d = 238 \text{m/s}$, $k_v = 100$ for the velocity control
loop; $k_p = 5$, $k_{\phi} = 10$ for the roll stabilization loop;
and $\theta_1 = 2 \times 0.707$, $\theta_2 = 1$ for yaw-pitch autopilot
loop. Actuator model for control fin operation is set to
be a first-order low pass filter with the form
$\ddot{\delta} = -\delta + \delta \tau$, $(\tau) = E, O, R$ for the time constant
$\tau = 10 \text{ms}$.

Figs. 5 and 6 present the simulation results when the
acceleration commands are given as square wave
functions with maximum values of $\pm 2g$ and $\pm 3g$
respectively. As can be seen from these figures, all of
the states and control inputs, with the exception of the
thrust force, appear to be unsaturated and the overall
control loop operates properly. The tracking results in
Figs. 5(a) and 6(a) show the decoupled response
between yaw and pitch accelerations. Since the strong
coupling between yaw and pitch dynamics are
effectively compensated by the feedback linearization
in MIMO structure. Figs. 5(b) and 6(b) show the
velocities using the thrust force in Figs. 5(g) and 6(g),
respectively. We can see that thrust force is relatively
independent of other dynamics and is insensitive to
the saturation effect. Figs 5(c), 5(d), 6(c), and 6(d) show the result of roll angle and roll rate control. In
both cases, roll dynamics is seen to be well stabilized
and the roll angle to remain sufficiently small even
when the perturbation range becomes wider with
larger acceleration commands.

Lastly, we can observe that the couplings between
roll control fin deflections and yaw-pitch control fin
deflections are compensated properly by applying the
proposed overall control loop structure. Even though
the bank angle ϕ_A changes discontinuously as
shown in Figs. 5(f) and 6(f), the coefficient
reformulation presented in Section 4 does not suffer
from these problems and the expected tracking
performance is maintained. It should be noted that the
responses in the case of $\pm 2g$ and $\pm 3g$ are similar,
and the expected performance could be obtained for
the $\pm 3g$ acceleration commands unlike the
conventional control methods (e.g. gain scheduling).
Based on these numerical simulation results, we can
conclude that the proposed method is very effective,
and thus, suitable to be applied to strongly coupled
ship-to-ship missiles.

6. CONCLUSIONS

This paper presented a design method for the
MIMO nonlinear autopilot, and also discussed the
stability analysis for the ship-to-ship missiles with
strong couplings between roll, yaw, and pitch axial
dynamics. First, we proposed a control loop structure
for roll, yaw, and pitch autopilot which can determine
the required angles of all three control fins. For yaw
and pitch autopilot design, missile model is reduced to
a minimum phase model by applying a singular
perturbation like technique and a MIMO nonlinear
autopilot is designed. By considering the couplings
between the roll, yaw, and pitch channel, a multi-input
multi-output controller was proposed to realize a
decoupled acceleration tracking performance. And the
stability is analyzed considering roll influences on
dynamic couplings of yaw and pitch channel as well
as the aerodynamic couplings. Since we have
designed the autopilot for an ideal missile model and
did not consider any issues on its implementation and
robustness, the performance and stability could be
degraded by some kind of aerodynamic uncertainties
or in a digital environment. Future works on this
MIMO nonlinear autopilot design should focus on the
practical design method considering the uncertainties
digital implementation.
Fig. 5. Simulation results with acceleration command $A_y(z)c = \pm 2g$. (In (a), (g), and (h), solid: achieved, dotted: commanded).
Multi-Input Multi-Output Nonlinear Autopilot Design for Ship-to-Ship Missiles

(a) Accelerations.

(b) Axial velocities.

(c) Angular rates.

(d) Euler angles.

(e) Angle-of-attack and side slip angle.

(f) Total angle-of-attack and bank angle.

(g) Thrust.

(h) Control fin deflections.

Fig. 6. Simulation results with acceleration command $A_y(z) = \pm 3g$. (In (a), (g), and (h), solid: achieved, dotted: commanded.)
Here we derive the upper bound of norms in matrix form as

\[x(t) = \begin{bmatrix} e_v(t) \\ e_\theta(t) \end{bmatrix}, \quad A_1 = \begin{bmatrix} -\theta_1 & 0 & -\theta_2 & 0 \\ 0 & -\theta_1 & 0 & -\theta_2 \\ 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \end{bmatrix}, \]

\[A_2 = \frac{-\theta_2 h_v}{m(Xh_v + D)} \begin{bmatrix} (\text{HUC}_{\text{nr}} - K_r I_M) & 0 \\ 0 & (\text{HUC}_{\text{mr}} + K_q I_M) \\ 0 & 0 \\ 0 & 0 \end{bmatrix}. \]

Here we derive the upper bound of norms \[\|e_v(t)\|, \|e_\theta(t)\|, \|e_A(t)\|, \text{ and } \|e_0(t)\| \] as follows:

Since \(A_1 \) is a Hurwiz matrix for \(\theta_1, \theta_2 > 0 \), there exists a positive definite matrix \(P \) satisfying

\[A_1^T P + PA_1 = -Q \] \hspace{1cm} (A2)

for some positive definite matrix \(Q \). Define Lyapunov function candidates as

\[V_1 = \frac{1}{2} w^T P w, \quad V_2 = \frac{1}{2} \eta_0^T e_0. \] \hspace{1cm} (A3)

Differentiating \(V_1 \) with respect to time, and using (A1), (A2), and (A3), we have

\[V_1 = \frac{1}{2}(w^T A_1^T P + P A_1 w + \frac{1}{2} w^T P (A_1 w + A_2 e_0)) \]

\[= \frac{1}{2} w^T (A_1^T P + P A_1) w + \frac{1}{2} (e_0^T A_2 P w + w^T P A_2 e_0) \]

\[\leq -\frac{1}{2} w^T Q w + \lambda_M(P) \cdot \|e_0\| \cdot \|w\| \cdot \|e_0\| \]

\[\leq -\lambda_m(Q) V_1 + \lambda_M(P) \cdot \|e_0\| \cdot \sqrt{2 - \sqrt{V_1}} \sqrt{\lambda_m(P)}, \]

where \(\lambda_M(P) \) and \(\lambda_m(P) \) are the maximum and minimum eigenvalues of matrix \(P \), respectively, and the vector \(\theta_3 \) is defined as follows:

\[\theta_3 = \begin{bmatrix} \theta_2 h_v (\text{HUC}_{\text{nr}} - K_r I_M) \\ \theta_2 h_v (\text{HUC}_{\text{nr}} + K_q I_M) \\ \frac{m(Xh_v + D)}{m(Xh_v + D)} \end{bmatrix}. \]

If we define \(v_1 = \sqrt{V_1} \), above inequality yields

\[v_1 \leq -\lambda_m(Q) \frac{2}{2\lambda_m(P)} v_1 + \lambda_M(P) \cdot \|e_0\| \cdot \sqrt{2 - \sqrt{v_1}} \sqrt{\lambda_m(P)} \] \hspace{1cm} (A4)

Integrating above equation with respect to time gives

\[v_1(t) \leq v_1(0) e^{-\sigma t} + \frac{\lambda_M(P)}{2\lambda_m(P)} \cdot \|e_0\| \cdot \sqrt{2 - \sqrt{v_1(t)}} e^{-\sigma(t-\tau)} d\tau, \] \hspace{1cm} (A5)

where \(\sigma = \lambda_m(Q)/2\lambda_m(P) > 0 \). Hence, from (A3) and (37), (A5) yields

\[\|e_\theta(t)\| \leq S_1 e^{-\sigma t} + S_2 \int_0^t \|e_\theta\| \cdot \|e_0\| \cdot e^{-\sigma(t-\tau)} d\tau, \] \hspace{1cm} (A6a)

\[\|e(t)\| \leq \|e_\theta(t)\| + \|e_0(t)\| \leq S_1 e^{-\sigma t} + S_2 \int_0^t \|e_\theta\| \cdot \|e_0\| \cdot e^{-\sigma(t-\tau)} d\tau + \|e_0(t)\|. \] \hspace{1cm} (A6b)
where
\[S_1^* = \sqrt{\frac{2}{\lambda_m(P)}} u_1(0), \quad S_2^* = \frac{\lambda_M(P)}{\lambda_m(P)}. \]

Now, we take the time derivative of \(V_2 \) in (A3) and proceed as in \(V_1 \) to obtain
\[
\|v_0(t)\| \leq \|v_0(0)\| e^{\|E\| t} + \int_0^t \|\dot{v}(\tau)\| e^{\|E\| (t-\tau)} d\tau. \tag{A7}
\]

From (A6a), (A6b), and (A7), the boundedness of \(e_v, e_\eta, e_A, e_0 \) depends on that of \(h \).

We take \(h(\alpha, \beta, u_y, u_z) \) into account. By using (22), the time derivative of (28) becomes
\[
\frac{d}{dt} h(\alpha, \beta, u_y, u_z) = \frac{d}{dt} (h_y, h_z) = \left\{ (BX_{cg} - 1)(X_{cg}h_v + D)m \right\}
\[
\cdot A_2^{-1}
\[
+ p \frac{UQSD}{I_M(h_v + DB)} \cdot A_2^{-1} \cdot A_\alpha^{-1} \cdot \left\{ \begin{array}{c}
\frac{v_y}{v_z} \\
\frac{u_y}{u_z}
\end{array} \right\}, \tag{A8}
\]
and again, taking the time derivative of (14), we have
\[
\frac{1}{U} \ddot{u} = \left(\begin{array}{c}
\frac{QSD}{(X_{cg}h_v + D)m} \cdot \left\{ \frac{d}{dt} (A_{w_1}^{-1}) - \Theta_1 \cdot A_{w_1}^{-1} \right\} v

\frac{QSD}{(X_{cg}h_v + D)m} \cdot \Theta_2 \cdot A_{w_1}^{-1} \cdot \epsilon_{YZ}
\end{array} \right), \tag{A9}
\]
and
\[
\frac{1}{U} \|\dddot{v}\| \leq \left(\begin{array}{c}
\frac{QSD}{(X_{cg}h_v + D)m} \cdot (A_{w_1}^{-1}) - \Theta_1 \cdot A_{w_1}^{-1} \\
\Theta_2 \cdot A_{w_1}^{-1} \cdot \epsilon_{YZ}
\end{array} \right) \|v\| + \Theta_2 \cdot \|\epsilon_{YZ}\| \tag{A10}
\]
where \(\Theta_{w_2} \) is a positive constant which satisfies
\[
\left\| \frac{d}{dt} (A_{w_1}^{-1}) - \Theta_1 \cdot A_{w_1}^{-1} \right\| \leq \Theta_{w_2} \cdot \|A_{w_1}^{-1}\| \tag{A11}
\]
and \(u_1^* \) and \(u_2^* \) are given as
\[
u_1^* = \Theta_{w_2} \|A_{w_1}^{-1}\|, \quad u_2^* = \Theta_2 \|A_{w_1}^{-1}\| \tag{A12}
\]
The derivation of (A11) is given in Appendix B.

From the fourth condition of Assumption 3, \(u_1^* \) and \(u_2^* \) are bounded independent of \(\alpha \) and \(\beta \).

Also, from Proposition 1, the stabilized dynamics of reduced system result in
\[
\left\| v(t) \right\| \leq \lambda_v, \quad \left\| A_{wc}(t) - \bar{A}_{wc}(t) \right\| \leq \lambda_A \tag{A13}
\]
for some positive constants \(\lambda_v \) and \(\lambda_A \). As can be seen in (13), it should be noted that \(\lambda_A \) is a bound converging to zero asymptotically. Thus, we have inequalities
\[
\|v\|_\infty \leq \lambda_v + \|v\|_\infty, \quad \|e_{YZ}\|_\infty \leq \lambda_A + \|e_{YZ}\|_\infty \tag{A14}
\]
and (A10) yields
\[
\frac{1}{U} \|\dddot{v}\| \leq u_1^* \|v\|_\infty + u_2^* \|e_{YZ}\|_\infty + (u_1^* \lambda_v + u_2^* \lambda_A).
\]

Combining (A8), (A14), and (A15), we have the inequality
\[
\left\| \frac{d}{dt} h(\alpha, \beta, u_y, u_z) \right\| \leq \eta_1 \cdot \|v\|_\infty + \eta_2 \cdot \|U\|_\infty + \eta_3
\]
\[
\leq (\eta_1 + u_1^* \eta_2) \|v\|_\infty + u_1^* \eta_2 \|e_{YZ}\|_\infty + \lambda_v \eta_1 + \lambda_A \eta_2 + \lambda_v \eta_3
\]
\[
+ (u_1^* \lambda_v + u_2^* \lambda_A) \eta_2 + \eta_3
\]
\[
= h_1^* \|v\|_\infty + h_2^* \|e_{YZ}\|_\infty + h_3^*, \tag{A16}
\]
where
\[
\eta_1 = \left\{ \begin{array}{c}
\left\| A_{w_1}^{-1} \right\| (BX_{cg} - 1)(X_{cg}h_v + D)m

\frac{UQSD}{I_M(h_v + DB)} \cdot (A_{w_1}^{-1})
\end{array} \right\}
\[
\left\| v \right\|_\infty + \Theta_2 \cdot \|\epsilon_{YZ}\|_\infty
\]
\[
\eta_2 = \frac{UQSD}{I_M(h_v + DB)} \cdot (A_{w_1}^{-1}) \left\| v \right\|_\infty
\]
\[
\eta_3 = \frac{UQSD}{I_M(h_v + DB)} \left\| \Theta_2 \cdot \epsilon_{YZ} \right\|_\infty \left\| \frac{d}{dt} (A_{w_1}^{-1}) - \Theta_1 \cdot A_{w_1}^{-1} \right\|_\infty
\]
\[
= h_1^* \|v\|_\infty + h_2^* \|e_{YZ}\|_\infty + h_3^*, \tag{A17}
\]
After several algebraic operations, we have the inequality
\[
\int_0^t \left\| \frac{d}{dt} h(\alpha, \beta, u_y, u_z) \right\| e^{-\sigma(t-\tau)} d\tau \leq H_1 e^{-\sigma t} + H_2 + \int_0^t H_3 \|v_0(\tau)\| e^{-\sigma(t-\tau)} d\tau, \tag{A17}
\]
where
\[H_1^i = \frac{h^i + h^i}{\|d^i\|}, \quad H_2^i = \frac{h^i}{\|d^i\|}, \]
\[H_3^i = \frac{h^i + h^i}{\|d^i\|}. \]

For the proof of (A17), see Appendix C.

Substituting (A17) into (A7) and using Gronwall-Bellman Inequality [13], we have
\[
\|e_0(t)\| \leq \|e_0(0)\| e^{-\frac{\sigma t}{\|d^i\|}} + H_1^i e^{-\sigma t} + H_2^i + H_3^i \cdot e^{-\sigma(t-\tau)} \cdot \exp(\int_0^t H_2^i e^{-\sigma(t-\tau)} d\zeta) d\tau
\]
and this yields
\[
\|e_0(t)\| \leq \|e_0(0)\| e^{-\frac{\sigma t}{\|d^i\|}} + H_1^i e^{-\sigma t} + H_2^i + H_3^i \cdot e^{-\sigma(t-\tau)} \cdot \left(\frac{H_1^i e^{-\sigma(t-\tau)} \|d^i\|}{\|d^i\|} \right) + H_2^i + \frac{e H_2^i}{\sigma e} \]
\[
\text{and this bound depends on the initial values and design parameters.}
\]

APPENDIX B: DERIVATION OF (A11)

The relation between \(d(A_{\nu}^{-1})/dt \) and \(A_{\nu}^{-1} \) is shown by approximating the aerodynamic coefficients as polynomials. As in many researches [10,12, 15], the nonlinear aerodynamic coefficients can be fitted as polynomial functions with sufficient accuracy. Here, we define a function which describes the order of the given polynomial.

\[
\text{order}[A] = \text{the order of polynomial } A.
\]

For simplicity, instead of using the original \(C_a(\alpha, \beta) \), we assume that \(C_a \) is dependent on only \(\beta \) as in SISO system, and the Jacobian matrix in (9) is replaced with a scalar function defined as \(A_{\nu}^{-1} = \frac{\partial C_a}{\partial \beta} \); Since we can proceed with \(C_a(\alpha, \beta) \) in the same manner. Suppose that original coefficient \(C_a \) can be approximated by an \(n \)-th order polynomial function in \(\beta \) with sufficient accuracy as
\[
C_a(\beta) = \beta^n + a_{n-1} \beta^{n-1} + \cdots + a_0,
\]
\[
A_{\nu}^{-1} = \frac{\partial C_a}{\partial \beta} = n \beta^{n-1} + a_{n-1} \beta^{n-2} + \cdots + a_1.
\]

From (32a), we have
\[
\frac{d}{dt} \left(A_{\nu}^{-1} \right) = -\frac{\partial A_{\nu}}{\partial \beta} \left(A_{\nu}^{-1} \right)^2 \dot{\beta} = -\frac{\partial A_{\nu}}{\partial \beta} \left(A_{\nu}^{-1} \right)^2 v_y \cdot \frac{1}{A_{\nu}} = A^* \cdot A_{\nu}^{-1}.
\]

where
\[
A^* = \frac{\partial A_{\nu}}{\partial \beta} \left(A_{\nu}^{-1} \right)^2 v_y = \frac{H_{\nu}^{-1} + a_{\nu-1} \beta^{\nu-2} + \cdots + a_1}{(n \beta^{\nu-1} + a_{\nu-2} \beta^{\nu-2} + \cdots + a_1)^2 v_y}.
\]

From (23), we have
\[
\text{order}[v_y] \leq \text{order}[A^*] = \text{order}[C_a] = n.
\]

Also, checking the order of \(v_y \) in (B4), the order of \(A^* \) is lower than or equal to zero, i.e.,
\[
\text{order}[A^*] \leq 0.
\]

Accordingly, from the second condition of Assumption 3 and (B2), the denominator polynomial of \(A^* \) is positive and also independent of the value of \(\beta \); thus, \(A^* \) can be bounded for some proper constant \(\lambda^* \) as
\[
\|A^*\| \leq \lambda^* \beta \]
which yields
\[
\left\| \frac{d}{dt} \left(A_{\nu}^{-1} \right) \right\| \leq \lambda^* \|A_{\nu}^{-1}\|.
\]

Finally, (A11) can be described again as
\[
\left\| \frac{d}{dt} \left(A_{\nu}^{-1} \right) - \dot{\theta}_\nu \cdot A_{\nu}^{-1} \right\| \leq (\lambda^* + 1) \|A_{\nu}^{-1}\| = \theta_\nu \|A_{\nu}^{-1}\|,
\]
where \(\theta_\nu = \lambda^* + 1 \).

APPENDIX C: PROOF OF (A17)

\[
\int_0^t \frac{d}{dt} \left[h(\alpha, \beta, u_y, u_z) \right] e^{-\beta(t-\tau)} d\tau
\]
\[
\begin{align*}
&\leq \int_0^t (h_1^s \| p_1(\tau) \| + h_2^s \| A_1 \|) + h_3^s \| e_0(\tau) \| + h_3^* e \| A_2 \|) \, d\tau \\
&\leq \int_0^t (h_1^s \| p_1(\tau) \| + h_2^s \| A_1 \|) + h_3^s \| e_0(\tau) \| + h_3^* e \| A_2 \|) \, d\tau \\
&\times e^{-\| A_2 \| t} d\tau \\
&\leq (h_1^s + h_2^s) \left(\frac{1}{\| A_2 \|} \| \theta \| \right) e^{-\| A_2 \| t} d\tau \\
&+ S_3^* \| \theta \| + e^{-\sigma t} \left(\frac{\| e_0 \|}{\| A_2 \|} \right) e^{-\| A_2 \| t} d\tau \\
&+ \int_0^t (h_2^s \| A_1 \|) \| e_0(\tau) \| \, e^{-\| A_2 \| (t-\tau)} d\tau \\
&+ \frac{h_3}{\| A_2 \|} (1 - e^{-\| A_2 \| t}) \\
&\leq \left(\frac{h_1^s + h_2^s}{\| A_2 \| - \sigma} S_1^* e^{-\sigma t} \right) + \left(\frac{h_3}{\| A_2 \|} \right) e^{-\| A_2 \| t} d\tau \\
&+ \left(\frac{h_1^s + h_2^s}{\| A_2 \| - \sigma} S_3^* \| \theta \| \right) + e^{-\sigma t} \left(\frac{\| e_0 \|}{\| A_2 \|} \right) e^{-\| A_2 \| t} d\tau \\
&+ \int_0^t (h_2^s \| A_1 \|) \| e_0(\tau) \| \, e^{-\| A_2 \| (t-\tau)} d\tau \\
&\leq \left(H_1 e^{-\sigma t} \right) + \left(H_2^* \right) + \left(\int_0^t H_3^* \| e_0(\tau) \| \, e^{-\sigma (t-\tau)} d\tau \right),
\end{align*}
\]

where

\[
\begin{align*}
H_1^* &= \frac{h_1^s + h_2^s}{\| A_2 \| - \sigma} S_1^* \\
H_2^* &= \frac{h_3}{\| A_2 \|} \\
H_3^* &= \frac{h_1^s + h_2^s}{\| A_2 \| - \sigma} S_3^* \| \theta \| + h_2^*.
\end{align*}
\]

Substituting (A16) into (A7), we have the first inequality. The second and third inequalities come from (16) and (A6a), respectively. In the fourth inequality, we used the condition, \(0 < \sigma < \| A_2 \| \).

REFERENCES

Ki Hong Im received the B.S., M.S. degree in Mechanical Engineering from Pusan National University in 1999, 2001, respectively, and the Ph.D. degree in Electrical Eng. and Computer Science from Seoul National University in 2006. His research interests include nonlinear systems and adaptive control.

Dongkyoung Chwa received the B.S., M.S., and Ph.D. degree in Electrical Engineering and Computer Science from Seoul National University in 1995, 1997, 2001, respectively. His research interests include nonlinear systems, and adaptive and robust control.

Jin Young Choi received the B.S., M.S., and Ph.D. degree in Electrical Engineering and Computer Science from Seoul National University in 1982, 1984, 1993, respectively. His research interests include intelligent systems and adaptive control.