Delay-Dependent Guaranteed Cost Control for Uncertain Neutral Systems with Distributed Delays

Yongmin Li, Shengyuan Xu*, Baoyong Zhang, and Yuming Chu

Abstract: This paper considers the problem of delay-dependent guaranteed cost controller design for uncertain neutral systems with distributed delays. The system under consideration is subject to norm-bounded time-varying parametric uncertainty appearing in all the matrices of the state-space model. By constructing appropriate Lyapunov functionals and using matrix inequality techniques, a state feedback controller is designed such that the resulting closed-loop system is not only robustly stable but also guarantees an adequate level of performance for all admissible uncertainties. Furthermore, a convex optimization problem is introduced to minimize a specified cost bound. By matrix transformation techniques, the corresponding optimal guaranteed controller can be obtained by solving a linear matrix inequality. Finally, a simulation example is presented to demonstrate the effectiveness of the proposed approach.

Keywords: Distributed delay, linear matrix inequality, neutral systems, robust guaranteed control, robust stabilization.

1. INTRODUCTION

The guaranteed cost control problem of uncertain systems was first put forward in [1] and then has been extensively investigated; the purpose is to design a controller to robustly stabilize an uncertain system while guaranteeing an adequate level of performance. On the other hand, as is well known, time delay is frequently one of the main causes of instability and poor performance of a control system [7,13,14]. Therefore, analysis and synthesis of time-delay systems have attracted a great deal of attention [9,17,19]. It is noted that the guaranteed cost control approach has been extended to various types of uncertain time-delay systems; see, e.g., [10,15,18,20-22,25], and the references therein. When not all the states are available for feedback, dynamic output feedback controllers were designed in [16] to solve the guaranteed cost control problem.

In practical applications there are numerous control systems depending not only on state delays but also on derivatives of delayed states. Such systems are referred to as neutral delay systems [2,27,28,30]. The guaranteed cost control problem related to neutral delay systems has been studied in [23,24] and [26], respectively. It is worth noting that although the design methods used in these references are delay-independent, the achieved guaranteed costs depend on the size of the time delay. This fact suggests that delay-dependent design method give lower cost value than the delay-independent ones [3,11,14]. When the number of summands in a system equation is increased and the differences between neighboring argument values are decreased, systems with distributed delays will arise. Distributed delays can also be found in the modeling of feeding systems and combustion chambers in a liquid monopropellant rocket motor with pressure feeding [4,6]. Therefore, systems with distributed delays have received much attention in the past years. Results on stability analysis and controller design for such systems can be found in [7]. However, the problem of delay-dependent guaranteed cost control for uncertain neutral systems with distributed delays has not been investigated so far, which is still open and remains challenging. This motivates the present study.

In this paper, by utilizing the free weighing matrix method [12], we consider the problem of delay-dependent guaranteed cost control for uncertain neutral delay systems with time-varying norm-bounded parametric uncertainties and distributed...
delays. The performance index is assumed to be integral quadratic cost functions. The purpose of the problem we address is the design of a state feedback controller such that the closed-loop system is stable and an adequate level of performance is guaranteed for all admissible uncertainties. A sufficient condition for the solvability of this problem is obtained in terms of an LMI. When this LMI is feasible, an explicit expression of the desired guaranteed cost controller is given. It is worth pointing out that the LMI approach developed in the paper does not involve any tuning of parameters and thus can be computed effectively by using interior point algorithm [31].

Notation: Throughout this paper, for real symmetric matrices X and Y, $X \geq Y$ (respectively, $X > Y$) means that the matrix $X - Y$ is positive semi-definite (respectively, positive definite). I is an identity matrix with appropriate dimension. The superscript "T" represents the transpose of a matrix. The notation "·" is used as an ellipsis for terms that are induced by symmetry. Matrices, if the dimensions are not explicitly stated, are assumed to have compatible dimensions for algebraic operations.

2. PROBLEM FORMULATION

Consider a class of uncertain neutral systems with distributed delays described by:

$\Sigma: \dot{x}(t) = [A + \Delta A(t)]x(t) + [A_h + \Delta A_h(t)]x(t-\tau_1(t)) + [A_d + \Delta A_d(t)]x(t-\tau_2(t)) + \int_{t-h}^{t} x(s)ds + [B + \Delta B(t)]u(t),$

$x(t) = \phi(t), \quad t \in [-h, 0],$

where $x(t) \in \mathbb{R}^n$ is the state; $u(t) \in \mathbb{R}^m$ is the control input; $\phi(t)$ is the continuously differentiable initial function on $[-h, 0]$ with $h = \max \{h_1, h_2, h_3\}$; A, A_h, A_d and B are known real-valued matrices representing time-varying parameter uncertainties, and are assumed to be of the form:

$[\Delta A(t), \Delta A_h(t), \Delta A_d(t), \Delta B(t)] = MF(t)[N_1, N_2, N_3, N_4, N_5],$

where M, N_1, N_2, N_3, N_4 are known real constant matrices of appropriate dimensions and $F(t): \mathbb{R} \rightarrow \mathbb{R}^{n \times m}$ is an unknown time-varying matrix function satisfying:

$F(t)^T F(t) \leq I.$

The uncertain matrices $\Delta A(t)$, $\Delta A_h(t)$, $\Delta A_d(t)$, $\Delta A_d(t)$ and $\Delta B(t)$ are said to be admissible if both (1) and (2) hold. $\tau_1(t)$ and $\tau_2(t)$ are the time-varying delays of the system and satisfy:

$0 \leq \tau_i(t) \leq h_i, \quad i = 1, 2,$

$\tau_1(t) + \tau_2(t) \leq d_1, \tau(t) \leq d_2 < 1.$

Now, consider the following linear state-feedback controller:

$u(t) = Kx(t),$

where $K \in \mathbb{R}^{m \times n}$ is the controller gain to be determined. Then the resulting closed-loop system from Σ and (5) as:

$\Sigma_c: \dot{x}(t) = A(t)x(t) + A_h(t)x(t-\tau_1(t)) + A_d(t)x(t-\tau_2(t)) + \int_{t-h}^{t} x(s)ds + [B + \Delta B(t)]u(t),$

$x(t) = \varphi(t), \quad t \in [-h, 0],$

where

$A(t) = A + BK + \Delta A(t) + \Delta B(t)K,$

$A_h(t) = A_h + \Delta A_h(t), A_d(t) = A_d + \Delta A_d(t), A_d(t) = A_d + \Delta A_d(t),$\n
$A_d(t) = A_d + \Delta A_d(t), \quad \alpha(t) = \int_{t-h}^{t} x(s)ds.$

Associated with the delay system (Σ_c) we define the cost function as:

$J = \int_{0}^{\infty} [x(t)^T R_1 x(t) + u(t)^T R_2 u(t)] dt,$

where R_1 and R_2 are given matrices with $R_1 > 0$, $R_2 > 0$. Throughout this paper, we shall use the following definition:

Definition 1: The uncertain neutral delay system (Σ_c) is said to be robustly stable if the equilibrium solution of system (Σ_c) with $u(t) = 0$ is globally asymptotically stable for all admissible uncertainties $\Delta A(t)$, $\Delta A_h(t)$, $\Delta A_d(t)$, $\Delta A_d(t)$ and $\Delta B(t)$.

The guaranteed cost control problem to be addressed in this paper can be formulated as follows: Given three scalars $h_i > 0, i = 1, 2, 3$, design a state-feedback controller in (5) such that for any time-varying delays $\tau_i(t)$ satisfying (3) and (4), $i = 1, 2$, the closed-loop system (Σ_c) is robustly stable and the cost-function in (6) has an upper bound for all admissible uncertainties. In this case, (5) is said to be a guaranteed cost state-feedback controller.

Before concluding this section, we introduce the following lemma, which will be used to derive our main results in the next section.

Lemma 1 [29]: Let A, D, S, W and F be real matrices with appropriate dimensions such that
Delay-Dependent Guaranteed Cost Control for Uncertain Neutral Systems with Distributed Delays

For any scalar \(\varepsilon > 0 \) such that \(W - \varepsilon DD^T > 0 \),

\[
(A + DFS)^T W^{-1} (A + DFS) \leq A^T (W - \varepsilon DD^T)^{-1} A + \varepsilon^{-1} S^T S.
\]

3. MAIN RESULTS

In this section, we will give a sufficient condition for the robust guaranteed cost control problem formulated in the previous section.

Theorem 1: Consider the uncertain neutral time-delay system \(\Sigma^c \) and the cost function (6). Then, for given matrices \(R_k > 0, R_2 > 0 \) and three scalars

\(h_i > 0, i = 1, 2, 3 \), the guaranteed cost control problem is solvable if there exist matrices \(X > 0, \ X_1 > 0, \ X_2 > 0, \ X_3 > 0, \ P_4 > 0, \ P_3 > 0, \ S_1, S_2, W_1, W_2 \) and scalars \(\varepsilon_1 > 0, \varepsilon_2 > 0, \varepsilon_3 > 0, \varepsilon_4 > 0 \), such that the following LMI holds:

\[
\begin{bmatrix}
\Omega_{11} & \Omega_{12} & \Omega_{13} & \Omega_{14}
\end{bmatrix} < 0,
\]

where

\[
\begin{align*}
\Omega_1 &= XA^T + Y^T B^T, \quad \Omega_2 = XN_1^T + Y^T N_2^T, \\
\Omega_{11} &= AX + BY + \Omega_1 + X_1 + X_2 + h_2^2 X_3 \\
&= (1 - d_1) X_1, \\
\Omega_{12} &= A h_1 X + W_1 - W_2, \quad \Omega_{13} = S_1 - S_2^T, \\
\Omega_{14} &= W_2 + W_2^T - (1 - d_2) X_1, \\
\Omega_{22} &= -S_1 - S_2^T - W_1 - W_2, \quad \Omega_{13} = -S_1 - S_2^T, \\
\Omega_{33} &= S_2^T - (1 - d_2) X_1, \\
\Omega_{44} &= h_1 P_4 - 2 h_1 X, \quad \Omega_{33} = h_2 P_3 - 2 h_2 X, \\
\Omega_{66} &= \varepsilon_2 M M^T - h_1^2 P_4, \Omega_{99} = \varepsilon_3 M M^T - h_2^{-1} P_3,
\end{align*}
\]

and the corresponding cost function in (6) satisfies:

\[
J \leq \phi(0)^T X^{-1} \phi(0) + \int_{-h_1}^0 \phi(s)^T X^{-1} X_1 X^{-1} d(\theta) \phi(s) ds + \int_{-h_2}^0 \phi(s)^T X^{-1} X_3 X^{-1} d(\theta) \phi(s) ds
\]

and

\[
\int_{-h_1}^0 \int_{-h_2}^0 \phi(s)^T X^{-1} \phi(s) d\theta d\theta
\]

In this case, a desired guaranteed cost state-feedback controller can be chosen as:

\[
u(t) = YX^{-1} x(t),
\]

and the corresponding cost function in (6) satisfies:

\[
J \leq \phi(0)^T X^{-1} \phi(0) + \int_{-h_1}^0 \phi(s)^T X^{-1} X_1 X^{-1} d(\theta) \phi(s) ds + \int_{-h_2}^0 \phi(s)^T X^{-1} X_3 X^{-1} d(\theta) \phi(s) ds
\]

and

\[
\int_{-h_1}^0 \int_{-h_2}^0 \phi(s)^T X^{-1} \phi(s) d\theta d\theta
\]
Proof: Under the condition of the theorem, we first show the robust stability of the closed-loop system (\(\Sigma^c\)). To this end, we denote

\[
P = X^{-1}, \quad K = YX^{-1}, \quad P_1 = PX_1P, \quad P_{21} = PX_{21}P,
\]

\[
P_3 = PX_3P, \quad \bar{P}_4 = P_4^{-1}, \quad W_1 = PW_1P, \quad W_2 = PW_2P,
\]

\[
\bar{S}_1 = PS_1P, \quad \bar{S}_2 = PS_2P, \quad P_{22} = X_{22}^{-1}, \quad \bar{P}_3 = P_3^{-1},
\]

\[
\begin{bmatrix}
\hat{H}_{11} \\
* \\
\hat{H}_{22}
\end{bmatrix} < 0,
\]

(10)

where

\[
\begin{align*}
\hat{\Omega}_1 &= A^T + K^TB^T, \quad \hat{\Omega}_2 = N_1^T + K^TN_5^T, \\
\hat{\Omega}_{11} &= PA + PBK + P\Omega_1P + P_1 + P_{21} + h_3^2P_3 \\
&- \bar{S}_1 - \bar{S}_2^T - \bar{W}_1 - \bar{W}_2^T, \\
\hat{\Omega}_{12} &= PA_4 + \bar{W}_1 - \bar{W}_2^T, \quad \hat{\Omega}_{13} = \bar{S}_1 - \bar{S}_2^T, \\
\hat{\Omega}_{22} &= \bar{W}_2 + W_2^T - (I - d_1)R_1, \\
\hat{\Omega}_{33} &= \bar{S}_2 + \bar{S}_1^T - (I - d_2)R_1, \\
\hat{\Omega}_{44} &= -(1 - d_2)P_{22}, \quad \hat{\Omega}_{55} = -P_3, \\
\hat{\Omega}_{66} &= h_1PP_4P - 2h_1P_7, \quad \hat{\Omega}_{77} = h_2PP_5P - 2h_2P,
\end{align*}
\]

\[
\hat{\Omega}_{88} = \hat{e}_2M \bar{M}^T - h_1^{-1}\hat{F}_4^{-1}, \\
\hat{\Omega}_{99} = \hat{e}_3M \bar{M}^T - h_2^{-1}\hat{F}_5^{-1}, \\
\hat{H}_{11} =
\begin{bmatrix}
\hat{\Omega}_{11} & \hat{\Omega}_{12} & \hat{\Omega}_{13} & PA_{41} & PA_{42} & h_1\bar{W}_1 & h_2\bar{S}_1 \\
* & \hat{\Omega}_{22} & 0 & 0 & 0 & h_1\bar{W}_2 & 0 \\
* & * & \hat{\Omega}_{33} & 0 & 0 & h_3\bar{S}_2 & 0 \\
* & * & * & \hat{\Omega}_{44} & 0 & 0 & 0 \\
* & * & * & * & \hat{\Omega}_{55} & 0 & 0 \\
* & * & * & * & * & \hat{\Omega}_{66} & 0 \\
* & * & * & * & * & * & \hat{\Omega}_{77}
\end{bmatrix}
\]

\hat{H}_{12} =
\[
\begin{bmatrix}
\hat{\Omega}_4 & \hat{\Omega}_4 & \hat{\Omega}_1 & \hat{\Omega}_2 & \hat{\Omega}_2 & \hat{\Omega}_2 \\
A_3^T & A_3^T & A_4^T & N_1^T & N_2^T & N_2^T & N_3^T \\
0 & 0 & 0 & 0 & 0 & 0 \\
A_4^T & A_4^T & A_1^T & N_3^T & N_3^T & N_3^T & N_3^T \\
A_2^T & A_2^T & A_2^T & N_4^T & N_4^T & N_4^T & N_4^T \\
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 \\
\end{bmatrix}
\]

It is easy to verify that

\[
(P_4^{-1} - P_4(P_4^{-1} - P) \geq 0, \\
(P_5^{-1} - P_5(P_5^{-1} - P) \geq 0,
\]

which imply

\[
h_1PP_2P - 2h_1P \geq -h_1P_4^{-1}, \\
h_2PP_2P - 2h_2P \geq -h_2P_5^{-1}.
\]

This together with (10) provides

\[
\begin{bmatrix}
\hat{H}_{11} & \hat{H}_{12} \\
* & \hat{H}_{22}
\end{bmatrix} < 0,
\]

(15)

where

\[
\hat{\Omega}_{66} = -h_1\bar{P}_4, \quad \hat{\Omega}_{77} = -h_2\bar{P}_5,
\]

\[
\hat{H}_{11} = \begin{bmatrix}
\hat{\Omega}_{11} & \hat{\Omega}_{12} & \hat{\Omega}_{13} & PA_{41} & PA_{42} & h_1\bar{W}_1 & h_2\bar{S}_1 \\
* & \hat{\Omega}_{22} & 0 & 0 & 0 & h_1\bar{W}_2 & 0 \\
* & * & \hat{\Omega}_{33} & 0 & 0 & h_3\bar{S}_2 & 0 \\
* & * & * & \hat{\Omega}_{44} & 0 & 0 & 0 \\
* & * & * & * & \hat{\Omega}_{55} & 0 & 0 \\
* & * & * & * & * & \hat{\Omega}_{66} & 0 \\
* & * & * & * & * & * & \hat{\Omega}_{77}
\end{bmatrix}
\]

Denote

\[
\bar{A} = [A + BK, A_0, 0, A_d, A_{d1}, A_{d2}, 0, 0],
\]

\[
\bar{N} = [N_1 + N_4K, N_2, 0, N_3, N_4, 0, 0],
\]

then, by the Schur complement formula and (3), we obtain

\[
\hat{H}_{11} + \text{diag}\{\hat{R}_1 + K^TR_2K, 0, 0, 0, 0, 0, 0\}
\]

\[
+ (\hat{e}_1^{-1} + \hat{e}_2^{-1} + \hat{e}_3^{-1} + \hat{e}_4^{-1}) \bar{N}^T \bar{N}
\]

\[
- \bar{A}^T (\hat{e}_3M \bar{M}^T - h_2^{-1}\hat{F}_5^{-1})^{-1}
\]
\[+ (\varepsilon_2 M M^T - h_1^{-1} P_{A_1}^{-1})^{-1} + (\varepsilon_4 M M^T - h_1^{-1} P_{A_2}^{-1})^{-1}] \bar{A} < 0, \]

where

\[\Omega_{66} = -\tau_1(t) \tilde{P}_3, \quad \Omega_{77} = -\tau_2(t) \tilde{P}_3, \quad \Omega_{11} = \begin{bmatrix} \Omega_{11} & \Omega_{12} & \Omega_{13} & P \bar{A}_h & P A_{d_2} & \tau_1(t) \tilde{W}_1 & \tau_2(t) \tilde{S}_1 \\ \Omega_{12} & \Omega_{22} & 0 & 0 & 0 & \tau_1(t) \tilde{W}_2 & 0 \\ \Omega_{13} & \Omega_{22} & 0 & 0 & 0 & \tau_1(t) \tilde{W}_2 & 0 \\ \Omega_{11} & \Omega_{22} & 0 & 0 & 0 & \tau_2(t) \tilde{S}_2 & 0 \\ \Omega_{15} & \Omega_{44} & 0 & 0 & 0 & \Omega_{44} & 0 \\ \Omega_{15} & \Omega_{55} & 0 & 0 & 0 & \Omega_{55} & 0 \\ \Omega_{15} & \Omega_{55} & 0 & 0 & 0 & \Omega_{55} & 0 \\ \ast & \ast & \ast & \ast & \ast & \ast & \ast \end{bmatrix} \tag{21} \]

Now, for the closed-loop system \((\Sigma_e^c)\), we define the following Lyapunov functional candidate:

\[V(t) = V_0(t) + V_1(t) + V_{21}(t) + V_{22}(t) + V_3(t) + V_4(t) + V_5(t) + V_6(t), \tag{23} \]

where

\[V_0(t) = x(t)^T P x(t), \]

\[V_1(t) = \int_{-\tau_1(t)}^t x(s)^T P \dot{x}(s) ds, \]

\[V_{21}(t) = \int_{-\tau_1(t)}^t \int_s^t x(t)^T P x(t) ds dt, \]

\[V_{22}(t) = \int_{-\tau_2(t)}^t \int_s^t x(t)^T P \dot{x}(s) ds dt, \]

\[V_3(t) = \int_{-\tau_1(t)}^t \int_{-\tau_1(t)}^s \dot{x}(s) \int_s^t x(t)^T P \dot{x}(s) ds dt, \]

\[V_4(t) = \int_0^t \int_s^t x(t)^T P x(t) ds dt, \]

\[V_5(t) = \int_{-\tau_2(t)}^t \int_{-\tau_2(t)}^s \dot{x}(s) \int_s^t P \dot{x}(s) ds dt, \]

\[V_6(t) = \int_{-\tau_2(t)}^t \int_{-\tau_2(t)}^s \dot{x}(s) \int_s^t P \dot{x}(s) ds dt, \]

then, the time derivative of \(V(t) \) along the trajectory of system \((\Sigma_e^c)\) is given by

\[\dot{V}(t) = \dot{V}_0(t) + \dot{V}_1(t) + \dot{V}_{21}(t) + \dot{V}_{22}(t) + \dot{V}_3(t) + \dot{V}_4(t) + \dot{V}_5(t) + \dot{V}_6(t), \tag{24} \]

where

\[\dot{V}_0(t) = 2 x(t)^T P \dot{x}(t) \]

\[= 2 x(t)^T P A(t) x(t) + A_h(t) x(t - \tau_1(t)) + A_{d_1}(t) \dot{x}(t - \tau_2(t)) + A_{d_2}(t) \alpha(t) \]

\[+ 2 x(t)^T \tilde{W}_1 \int_{-\tau_1(t)}^t \dot{x}(s) ds \]

\[+ 2 x(t)^T \tilde{W}_2 \int_{-\tau_1(t)}^t \dot{x}(s) ds \]

\[- 2 x(t)^T \tilde{W}_1 [x(t) - x(t - \tau_1(t))] \]

\[+ 2 x(t - \tau_1(t))^T \tilde{W}_2 \int_{-\tau_1(t)}^t \dot{x}(s) ds \]

\[- 2 x(t - \tau_1(t))^T \tilde{W}_2 [x(t) - x(t - \tau_1(t))] \]

\[+ 2 x(t)^T \tilde{S}_1 \int_{-\tau_2(t)}^t \dot{x}(t)^T \dot{x}(s) ds \]

\[- 2 x(t - \tau_2(t))^T \tilde{S}_2 [x(t) - x(t - \tau_2(t))] \]

\[\dot{V}_1(t) \leq x(t)^T P_1 x(t), \]

\[\dot{V}_{21}(t) \leq x(t)^T P_{21} x(t), \]

\[\dot{V}_{22}(t) \leq x(t)^T P_{22} x(t), \]

\[\dot{V}_3(t) \leq \int_{-\tau_2(t)}^t x(t)^T P_3 x(t) ds dt, \]

\[\dot{V}_4(t) \leq \int_0^t x(t)^T P_4 x(t) ds dt, \]

\[\dot{V}_5(t) \leq \int_{-\tau_2(t)}^t \int_{-\tau_2(t)}^s x(t)^T P_5 x(t) ds dt, \]

\[\dot{V}_6(t) \leq \int_{-\tau_2(t)}^t \int_{-\tau_2(t)}^s x(t)^T P_6 x(t) ds dt, \]

By Lemma 2, there exist \(\varepsilon_1 > 0, \varepsilon_2 > 0, \varepsilon_3 > 0, \) and \(\varepsilon_4 > 0, \) such that

\[\dot{V}_3(t) \leq \varepsilon_1 \theta(t, s, \theta)^T N \tilde{N} \eta(t, s, \theta), \]

\[\dot{\alpha}(t) \leq \eta(t, s, \theta)^T \tilde{N}^T (h_1^{-1} \tilde{P}_3^{-1}) \]

\[\dot{\eta}(t, s, \theta)^T \tilde{N}^T (h_1^{-1} \tilde{P}_3^{-1}) \]

\[\dot{\theta}(t) \leq h_1 \dot{P}_3 \dot{\theta}(t) \]

\[\dot{\theta}(t) \leq h_2 \dot{P}_3 \dot{\theta}(t) \]

\[\dot{\theta}(t) \leq h_2 \dot{P}_3 \dot{\theta}(t) \]

\[\dot{\theta}(t) \leq h_2 \dot{P}_3 \dot{\theta}(t) \]
Therefore, from (20) we obtain
\[
\dot{V}(t) \leq \frac{1}{\tau(t)^2} \int_{t-\tau(t)}^{t} \int_{t-\tau(t)}^{\infty} \eta(s,t) \eta(t,s) d s d t.
\]

Therefore from (20) we obtain
\[
\dot{V}(t) \leq -x(t)^T (R_1 + K^T R_2 K) x(t).
\]

Integrating both sides of (26) from 0 to any \(T > 0 \) gives:
\[
\int_0^T x(t)^T (R_1 + K^T R_2 K) x(t) d t \leq \psi(0)^T P \psi(0) + \int_0^T \left(x(t)^T \right) P_1 \psi(s) d s + \int_{-h_3}^T \int_0^T \left(x(s)^T \right) P_2 \psi(s) d s d t
\]
\[
+ \int_{-h_3}^T \int_0^T \left(\psi(s)^T \right) P_3 \psi(s) d s d t
\]
\[
+ \int_{-h_3}^T \int_0^T \left(\psi(s)^T \right) P_4 \psi(s) d s d t.
\]

Therefore (9) is satisfied. This completes the proof. □

It is worth noting that Theorem 1 gives a set of guaranteed cost controllers characterized in terms of a set of solutions to LMI (7). Each guaranteed cost controller ensures the quadratic stability of the resulting closed-loop system and an upper bound on the closed-loop cost function is given by (6). In view of this, it is desirable to find an optimal guaranteed cost controller which minimizes the upper bound (9). This problem is dealt with in the following theorem.

Theorem 2: Consider the uncertain neutral delay system (\(\Sigma \)) and the cost function (6). Suppose the following optimization problem

\[
\min_{\xi, c, d, e, q, l, z, \Gamma_i, i=1,2,\ldots, 7} \left(\xi + \text{tr} \sum_{i=1}^{7} (\Gamma_i) \right),
\]

s.t.

\[(1) \text{ LMI in Theorem 1,}
\]

\[(2) \left[-\xi \phi(0)^T \right] < 0,
\]

\[(3) \left[* \quad -X \right] < 0,
\]

\[(4) \left[-\Gamma_2 \quad D^T \right] < 0,
\]

\[(5) \left[-\Gamma_3 \quad E^T \right] < 0,
\]

\[(6) \left[-\Gamma_4 \quad Q^T \right] < 0,
\]

\[(7) \left[-\Gamma_5 \quad G^T \right] < 0,
\]

\[(8) \left[-\Gamma_6 \quad L^T \right] < 0,
\]

\[(9) \left[-\Gamma_7 \quad Z^T \right] < 0.
\]

has a solution for \(\xi, c, d, e, q, l, z, \Gamma_i, i=1,2,\ldots, 7 \), where

\[
\int_{-h}^0 \phi(s)^T \phi(s) d s = CC^T,
\]

\[
\int_{-h_2}^0 \phi(s)^T \phi(s) d s = DD^T,
\]

\[
\int_{-h_3}^0 \phi(s)^T \phi(s) d s = EE^T,
\]

\[
\int_{-h_3}^0 \left(\phi(s)^T d s \right) \int_{-h_3}^0 \phi(s)^T \phi(s) d s = QQ^T,
\]

\[
\int_{-h_3}^0 \left(\phi(s)^T d s \right) \int_{-h_3}^0 \phi(s)^T \phi(s) d s = GG^T,
\]

\[
\int_{-h_3}^0 \phi(s)^T P_4 \phi(s) d s = LL^T,
\]

\[
\int_{-h_3}^0 \phi(s)^T P_5 \phi(s) d s = ZZ^T.
\]

Then, the corresponding guaranteed cost controller in the form of (8) is an optimal guaranteed cost controller in the sense that under this controller the upper bound of the closed-loop cost function (9) is minimized.

Proof: It can be done easily by Shur complement formula, and is thus omitted.

Remark 1: Note that not all the matrix inequalities in Theorem 2 are LMIs. Some of them are quadratic-matrix inequality (QMI). In order to use the convex
optimization technique, the QMI must be converted to an LMI via some variable changes or transformations. For this purpose, we apply the congruence transformation to Theorem 2 to obtain the following result.

Theorem 3: Consider the uncertain neutral delay system \((\Sigma)\) and the cost function (6). Suppose the following optimization problem

\[
\min_{\xi, \tilde{C}, \tilde{D}, \tilde{E}, \tilde{Q}, \tilde{G}, L, Z, \Gamma_i, i=1,2,\ldots,7} \left\{ \tilde{\xi} + tr \sum_{i=1}^{7} \Gamma_i \right\},
\]

s.t.

1. \(LMI \text{ in Theorem } 1\),
2. \[
\begin{bmatrix}
-\xi & \varphi(0)^T \\
* & -X
\end{bmatrix} < 0,
\]
3. \[
\begin{bmatrix}
-\Gamma_1 & \tilde{C}^T \\
* & -X_1
\end{bmatrix} < 0,
\]
4. \[
\begin{bmatrix}
-\Gamma_2 & \tilde{D}^T \\
* & -X_{21}
\end{bmatrix} < 0,
\]
5. \[
\begin{bmatrix}
-\Gamma_3 & \tilde{E}^T \\
* & -X_{22}
\end{bmatrix} < 0,
\]
6. \[
\begin{bmatrix}
-\Gamma_4 & \tilde{Q}^T \\
* & -X_3
\end{bmatrix} < 0,
\]
7. \[
\begin{bmatrix}
-\Gamma_5 & \tilde{G}^T \\
* & -X_3
\end{bmatrix} < 0,
\]
8. \[
\begin{bmatrix}
-\Gamma_6 & L^T \\
* & -P_4
\end{bmatrix} < 0,
\]
9. \[
\begin{bmatrix}
-\Gamma_7 & Z^T \\
* & -P_5
\end{bmatrix} < 0,
\]

has a solution for \(\xi, \tilde{C}, \tilde{D}, \tilde{E}, \tilde{Q}, \tilde{G}, L, Z, \Gamma_i, i=1,2,\ldots,7\), where

\[
\tilde{C} = X_1 X^{-1} C, \quad \tilde{D} = X_{21} X^{-1} D, \quad \tilde{E} = X_{22} X^{-1} E,
\]
\[
\tilde{Q} = X_3 X^{-1} Q, \quad \tilde{G} = X_3 X^{-1} G.
\]

Then, the corresponding guaranteed cost controller in the form of (8) is an optimal guaranteed cost controller in the sense that under this controller the upper bound of the closed-loop cost function (9) is minimized.

Remark 2: The model discussed in our article contains distributed delay and variable delays both in state item and neutral item. If we set \(A_{d_2} = 0\), \(A_{d_1} = A_d\), \(h_1 = h\), \(h_2 = d\) in system \((\Sigma)\), it becomes an uncertain neutral time-delay system which has been proposed in reference [24]:

\[
\Sigma': \dot{x}(t) = [A + \Delta A(t)]x(t) + [A_h + \Delta A_h(t)]x(t-h) + [A_d + \Delta A_d(t)]x(t-d) + [B + \Delta B(t)]u(t),
\]
\[
x(t) = \varphi(t), t \in [-h,0].
\]

For this system, by using the same method as that in Theorem 1 and cost function (6), we can easily give a delay-dependent sufficient condition for the solvability of the robust guaranteed cost control problem, which is different from that in reference [24].

4. AN ILLUSTRATION EXAMPLE

In this section we present an example to illustrate the theory in the previous sections. Consider system \((\Sigma)\) with:

\[
A = \begin{bmatrix}
-0.9 & 0.8 & 0.9 \\
0.5 & 0.9 & -0.3 \\
0.7 & 0.3 & 0.2
\end{bmatrix}, \quad M = \begin{bmatrix} 0 \end{bmatrix},
\]
\[
A_h = \begin{bmatrix}
-1 & 1 & 0.2 \\
0.2 & 0 & 0.3 \\
0.8 & 0 & -1
\end{bmatrix}, \quad B = \begin{bmatrix} 1 \end{bmatrix},
\]
\[
A_{d_1} = \begin{bmatrix}
-0.2 & 0.1 & 0.2 \\
0.6 & 0 & 0.3 \\
0.2 & 0.3 & -0.5
\end{bmatrix}, \quad A_{d_2} = \begin{bmatrix}
0.6 & 0 & 0.3 \\
0.3 & 0.3 & -0.1
\end{bmatrix},
\]
\[
R_1 = \begin{bmatrix}
0.5 & 0.2 \\
0.2 & 0.3 \\
0.1 & 0.4
\end{bmatrix}, \quad R_2 = \begin{bmatrix} 0 \end{bmatrix},
\]
\[
N_1 = [0.1,0.1,0.1], \quad N_2 = [0,0.1,0.1], \quad N_3 = [0.1,0.1,0.1], \quad N_4 = [0,0.2,0.2], \quad N_5 = [0,0.1],
\]
\[
h_1 = 0.5, \quad h_2 = 0.6, \quad h_3 = 0.6, \quad d_1 = 1.2, \quad d_2 = 0.6,
\]

the initial condition is assumed to be \(\varphi(t) = [1,0,\exp(-t)]^T\) for all \(t \in [-0.6,0]\). Then, by solving the LMI s in Theorem 3, the optimal guaranteed cost controller gain is

\[
K = \begin{bmatrix}
-10.2547 & -13.2759 & -4.4138 \\
1.8173 & -0.9256 & 3.2401
\end{bmatrix}.
\]

Furthermore, the corresponding closed-loop optimal cost function is \(J = 18.3923\). The simulation results of the state responses of both the open-loop and closed-loop systems are shown in Figs. 1 and 2,

![Fig. 1. State response of the open-loop system.](image-url)
respectively. From these simulation results, it can be seen that the designed guaranteed controller satisfies the specified requirements.

Remark 3: If using Theorem 3 to the system (Σ') proposed in reference [24], we can obtain

\[
K = \begin{bmatrix}
-3.9755 & -6.3323 & -1.8054 \\
0.9193 & -0.6922 & 2.3969
\end{bmatrix}
\]

and the corresponding closed-loop optimal cost function is $J = 19.4339$. But we using the condition in theorem 3 of the article in [24] to our Example, the corresponding LMI is not feasible. This demonstrates that our method is somewhat better than that in [24].

5. CONCLUSIONS

In this paper, we have studied the problem of guaranteed cost control via memoryless state feedback controllers for uncertain neutral systems with norm-bounded time-varying parametric uncertainties and distributed delays. A sufficient condition for the existence of guaranteed cost controllers has been presented. An optimal guaranteed cost controller can be constructed by solving a certain LMI. It has been shown that the proposed guaranteed cost controller guarantees not only the quadratic stability of the closed-loop system, but also an adequate level of a quadratic cost function. An illustrative example has demonstrated the applicability of the proposed approach.

REFERENCES

Yongmin Li received the M.S. degree in Operation Research and Control Theory from Guizhou University of Technology in 2002. He joined Huzhou Teachers College in 2002 and now is a Ph.D. candidate at the School of Automation, Nanjing University of Science and Technology, Nanjing, China. His research interests include robust control, fuzzy system and stochastic system.

Shengyuan Xu received the Ph.D. degree from the Nanjing University of Science and Technology, China in 1999. His research interests include robust filtering and control, singular systems, time-delay systems, multi-dimensional systems and nonlinear systems.

Baoyong Zhang was born in Shandong province, China, in 1981. He received the B.Sc. degree in Mathematics in 2003 and the M.Sc. degree in Control Theory in 2006, both from Qufu Normal University, Qufu, China. He is now a Ph.D. candidate at the School of Automation, Nanjing University of Science and Technology, Nanjing, China. His current research interests include robust control and filtering, time-delay systems, stochastic systems, fuzzy systems and neural networks.

Yuming Chu received the B.Sc. degree from the Hangzhou Normal University, Hangzhou, China, in 1988. The M.Sc. and Ph.D. degrees from the Hunan University, Changsha, China in 1991 and 1994, respectively. His current research interests include robust filtering and control, quasiconformal mapping and complex dynamic systems.